将你的Spark SQL模型变为在线服务
整理来看,数据安全建设框架可以分为三个层面。 (1) 最下面为组织建设层: 数据治理小组负责整体决策层工作,比如数据安全计划的定位,策略、政策和组织等的制定;数据安全团队负责整体战术层和执行层工作,战术层比如具体安全计划的管理管控,如合规管理、风险管理、计划管理、进度管理和指标管理等等;执行层负责整体数据安全计划的落地工作,人员包括专业的数据安全人员和各业务团队的安全接口人。 (2) 中间为能力实现层: 通过“识别”、“保护”、“监视”、“检测”、“响应”和“恢复”六大功能,落地数据安全的合规、管理、技术和运营。 (3) 最上面为目标和愿景层: 通过组织建设和数据安全能力实现,保证组织用户数据、业务数据和公司数据,最终实现使数据使用更安全的愿景。 数据安全实施框架
数据安全工作如此繁杂多样,我们如何具体落地和有序建设执行呢,基于数据安全建设框架,制定如下数据安全实施框架: b. 按照数据状态区分
(3) 数据活动的定义: 数据的收集、存储、加工、使用、提供、交易、公开等行为。 (4) 数据安全的定义: 通过采取必要措施,保障数据得到有效保护和合法利用,并持续处于安全状态的能力。 数据安全的挑战 (1) 业务系统的灵活多变、需求复杂 互联网+的时代,市场的快速变化,企业业务的极速调整,企业每天都有可能出现系统上线、功能调整、接口的三方接入、数据的线上和线下外发等。面对这些变化和场景,我们如何应对? (2) 新技术新挑战 新技术带来新风险。云、物联网、大数据和AI等新技术的广泛应用给企业带来了巨大生产力的同时,也改变了传统网络的数据防护思路,新型的网络威胁我们如何应用? (3) 数据量大 大数据的兴起,数据的起始计量单位变成至少是PB级,甚至是EB级,在如此庞大的数据量面前,如何有效管理,如果做数据的快速识别、监控、检测、处置、响应? (4) 安全威胁增多 数据价值的提升,导致外部威胁的目的性、隐蔽性、破坏性都成上升趋势。如何降低威胁暴露面和何种体系防护应对? 数据安全的目标 目标:满足合规,贴合业务,将数据风险降低至可接受水平,让数据使用更安全。 办法总比困难多,面对各位数据安全挑战,数据安全从业者要有自己的数据安全防护体系思路,善于学习新技术新经验的能力,总结自己的套路和打法,以终为始,不断更新和进步。
业务面前,安全不是他们的对立面,要采取双赢思维,建立信任关系。业务的目的是盈利,而安全是保证业务稳定盈利,规避风险最佳帮手,彼此相辅相成,相互依存。 (编辑:莆田站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |