-
基于数据解析给出运营建议 咋整?
所属栏目:[大数据] 日期:2022-05-19 热度:170
有同学问:如何基于数据分析提出运营建议,今天我们拿个简单的题目来举例。这个题目陈老师之前讲过,有印象的同学应该还记得。再举一次,是因为每到招聘季都有人把它搬出来,而且有关它的大部分讲解,都是错的。 已知,下图是某个电商一周销售金额走势(具[详细]
-
生活中无处不在的数据解析
所属栏目:[大数据] 日期:2022-05-19 热度:68
关于数据分析的问题 很多时候,会被一些刚刚入门或者入门两三年的同学问:数据分析就是提数据吗?为什么我感觉我像个工具人一样天天写SQL做报表呢?! 每到这个时候,我就想起来了我入行的那个夏天,每天乐此不疲的跑着SQL。好像自己那会儿没有思考过这个[详细]
-
真正指挥大规模战争的其实为大数据和人工智能?
所属栏目:[大数据] 日期:2022-05-19 热度:130
大数据和人工智能到底有多强?大部分人仍然没有直观体会,但实际上已经渗透进当今地球和人类活动的方方面面。也正在深刻地改变世界的固有形态。那些过去的超级强国,在这方面仍然遥遥领先,而那些没有跟上潮流的90%以上的国家,其实早就彻底躺平;最主要的是[详细]
-
数据分析师七大实力 梳理标签体系
所属栏目:[大数据] 日期:2022-05-19 热度:198
大家好,我是爱学习的小xiong熊妹。 这次分享一个更高级能力:构造标签体系。在提升能力的顺序上,当然是先会打一个标签,再会搞整个体系了。 一、什么是标签体系? 围绕一个业务场景,实现业务闭环操作的若干个标签组合,称为标签体系。之所以需要标签体系[详细]
-
大数据分析是啥?
所属栏目:[大数据] 日期:2022-05-19 热度:59
大数据分析:是指对规模巨大的数据进行分析,大数据可以概括为:数据量大,速度快,类型多,价值、真实性。 大数据可以概括为5个V, 数据量大、速度快、类型多、价值、真实性。 1.可视化分析 不管是对数据分析专家还是普通用户,数据可视化是数据分析工具[详细]
-
大数据研究引用挑战预测增加
所属栏目:[大数据] 日期:2022-05-19 热度:178
尽管大数据行业有大量的软件平台和产品、开发人员和数据专业人士,以及许多热心的爱好者,但对于专业数据工作者和管理人员来说,在企业中实施数据战略仍然存在一些担忧和障碍。 数据分析平台提供商Unsupervised公司日前发表了一项名为2022年大数据恐惧和预[详细]
-
专家视点 数据无处不在的云原生途径
所属栏目:[大数据] 日期:2022-05-19 热度:119
使用 Kubernetes 进行架构是必不可少的核心部分,它使数据分析异常灵活,可在业务需要的任何地方运行,并以高并发、高性能、效率和可用性大规模运行。 从金融服务和保险到制造和医疗保健等垂直领域的无数企业发现,他们需要公共和私有云、混合和边缘部署来[详细]
-
大数据安全在云中的几个最优秀实践
所属栏目:[大数据] 日期:2022-04-13 热度:110
在处理云中的大量数据时,企业需要主动采取安全措施。不要等待威胁发生,应该首先采用一些安全方面的最佳实践。 任何大数据项目都涉及存储和处理大量数据,其中可能包括敏感信息或个人身份识别内容。解决云计算中的大数据安全问题需要采用各种最佳实践。[详细]
-
选择分析工具时要考虑的元素
所属栏目:[大数据] 日期:2022-04-13 热度:113
管理咨询机构Aspirant公司在调查报告中指出,随着人工智能(AI)的发展,各行业领域产生了大量数据,而这些数据对于企业都非常有帮助,但许多人不知道如何评估或分析如此大量的信息。 企业将引入或采用大量的分析解决方案,这些解决方案大多具有相似的特性和[详细]
-
为何预测分析对零售企业如此重要
所属栏目:[大数据] 日期:2022-04-13 热度:132
预测分析是一种对企业越来越重要的策略。利用机器学习来分析企业收集的数据,现在可以用于对未来做出更准确的预测。虽然它在许多行业中的使用时间比许多人想象的还要长,但由于其复杂性和高昂的成本,该过程的采用率通常很低。然而,大数据和越来越多的可[详细]
-
预测分析的几个胜利案例
所属栏目:[大数据] 日期:2022-04-13 热度:116
多年来,企业一直在努力发展其分析能力,这不仅是为了了解过去的表现,而且是为了预测趋势和未来事件,以提高敏捷性。越来越多的公司正在部署预测分析工具,以提高自身的服务效率、开发产品、发现潜在威胁、优化维护工作,甚至挽救生命。 预测分析工具会将[详细]
-
大数据解析如何影响供应链?
所属栏目:[大数据] 日期:2022-04-13 热度:167
多年前,很多供应链的范围都在国内或本地,通常是比较简单的过程。全球化进程与技术进步相结合,为供应链增加了新的活力,但也使其变得更加复杂。最终,大数据作为一种用户友好的重要资产,并改变了供应链。但大数据给行业带来的最有价值的东西是什么?其答[详细]
-
数据科学项目失败的原由
所属栏目:[大数据] 日期:2022-04-13 热度:67
如今,数据科学几乎都会引起IT和业务主管们的兴趣。但数据科学确实会出问题。 事实上,利用科学方法、流程、算法和技术系统从结构化和非结构化数据中获取各种见解的数据科学项目可能会以多种方式失败,从而导致时间、金钱和其他资源的浪费。存在缺陷的项目[详细]
-
从人工智能到团队协作 数据科学家的7项关键技能
所属栏目:[大数据] 日期:2022-04-13 热度:116
如今的数据科学家具有的技能不仅需要精通人工智能和Python,还需要擅长与企业高管进行沟通。 美国劳工统计局将数据科学家列为未来增长最快的15个职业之一,预计在未来10年的工作岗位增长率将达到31%。随着数据日益成为所有企业的命脉,数据科学家不仅需要[详细]
-
将让业务繁荣发展的十大数据分析趋向
所属栏目:[大数据] 日期:2022-04-13 热度:83
企业需要发现数据分析技术的一些发展趋势,以轻松预测客户需求、个性化内容并实现业务目标。 行业专家Geoffrey Moore在一本著作中指出,如果没有大数据分析,企业的发展可能会很盲目,就像在高速公路上游荡的鹿一样。 根据调研机构Gartner公司的调查,企业[详细]
-
Google BigQuery是大数据分析的将来吗?
所属栏目:[大数据] 日期:2022-04-13 热度:161
考虑到Google BigQuery提高效率以及轻松存储大量信息的能力,它可能是大数据分析的未来方向。 如果企业未能实施正确的业务管理工具,那么在经营业务方面可能会很棘手。如果企业与数以千计的客户打交道,那么获得最佳生产力、充足预算和提高客户满意度应该[详细]
-
大数据为企业带来的益处
所属栏目:[大数据] 日期:2022-04-13 热度:135
大数据是推动企业可持续变革的重要技术之一,企业需要了解大数据将如何改善业务。 当企业高管听到大数据这个术语时,他们自然而然地想到的是数量惊人的可用数据。这些数据来自电子商务和全渠道营销领域,或来自物联网上的连接设备,或来自生成有关交易活动[详细]
-
数据剖析如何在幕后改善客户旅程
所属栏目:[大数据] 日期:2022-04-13 热度:95
在广泛使用大数据分析技术之前,企业管理人员几乎做出的每个决策都是猜测的结果。他们无法真正预见未来,也无法正确预测任何特定行动方案的结果,因此基本上采用有根据的猜测,并发现问题所在。如今可以查看从各种来源收集的数据,从而以更高的确定性找出[详细]
-
大数据导致 网站管理和发展的巨大改变
所属栏目:[大数据] 日期:2022-04-13 热度:125
大数据的进步和发展促使网站开发行业发生了一些令人印象深刻的变化。 多年来,网站开发行业一直处于技术变革的最前沿。网络开发者也是最早适应和采用大数据和机器学习技术的人员之一。 大数据如何影响网站开发行业?以下是一些最大的变化。 (1)更有效地使用[详细]
-
大数据分析工具必须具备的基本特性
所属栏目:[大数据] 日期:2022-04-13 热度:170
很多企业需要在大数据分析工具中获得一些基本功能,才能在2021年彻底改变业务。 在这个快节奏的世界中,传统的大数据分析是一个耗时的过程。商业世界中有着来自环境各个部分持续流动的实时数据。为了适应当前情况,企业必须在大数据分析工具上进行投资,作[详细]
-
大数据可以使特许经营业务蓬勃进展
所属栏目:[大数据] 日期:2022-04-13 热度:175
大数据技术对现代的运营变得非常重要。特许经营行业是受益于数据科学重大突破的领域之一,一些大数据初创公司甚至专门为特许经营提供服务,例如FranConnect。精明的特许经营权所有者还可以找到使用大数据技术更有效地发展业务的方法。 有很多令人信服的理[详细]
-
大数据如何成为建筑业的重要技术?
所属栏目:[大数据] 日期:2022-04-13 热度:135
当人们考虑到各行业采用创新技术时,可能不会想到建筑行业。这是有原因的,因为数十年来建筑行业在采用新技术方面进展缓慢。不过,这种情况已经开始改变,世界各地的建筑公司都在采用像大数据这样的创新技术。 建筑行业对创新技术的新兴趣来自于必要性。众[详细]
-
现代数据分析的角度
所属栏目:[大数据] 日期:2022-04-13 热度:64
如果没有合适的工具,组织将很难应对业务挑战。根据一些数据分析计划可以提供组织所需的基本见解。 即使在冠状病毒持续蔓延期间,有些事情也不会改变。与往年一样,在行业媒体进行的2021年首席信息官的现状调查中,接受调查的1062名IT领导者中有许多人选择[详细]
-
大数据对成功营销至关重要的原由
所属栏目:[大数据] 日期:2022-04-13 热度:184
在当今的数字时代,如果组织还在采用传统的平台开展营销活动,那么其成功的机会可能会越来越[详细]
-
关于数据科学 CIO在2030年可能看到的几种场景
所属栏目:[大数据] 日期:2022-04-13 热度:145
企业将如何使用数据解决未来10年面临的业务问题?可以考虑采用一些大胆的数据科学场景和如何做好准备的建议。 企业从解决业务问题发展到实施可行的决策有三个标准步骤。在此使用一个假设的例子来比较这些步骤在目前和2030年是如何完成的,并探讨如何为未来[详细]